5th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region Fermilab, May 30-June 3, 2007

Structure Functions at Low Q^2 : Target Mass Corrections

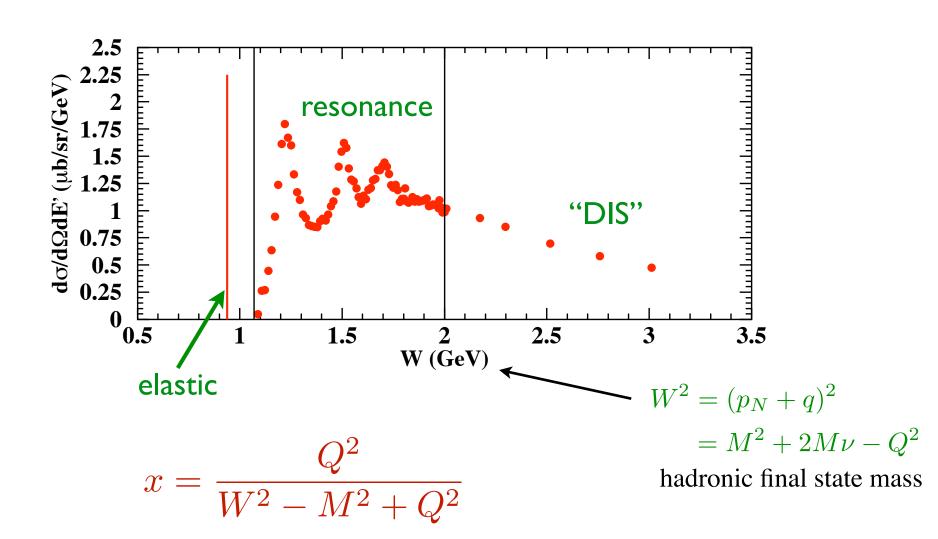
Wally Melnitchouk

Jefferson Lab

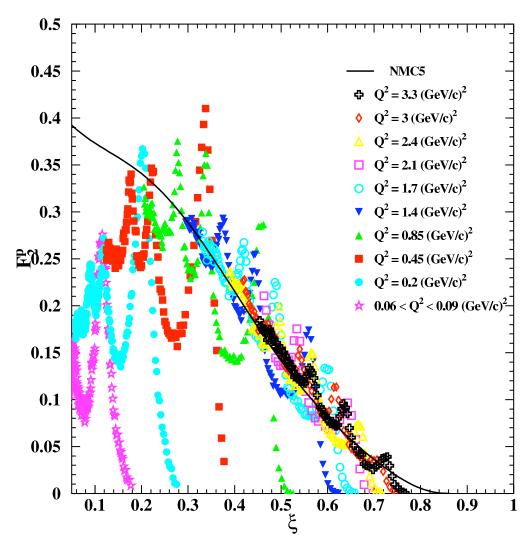
- Intriguing phenomena have been observed in low Q^2 structure functions
 - quark-hadron (Bloom-Gilman) duality
 - surprisingly small higher twist effects in (low) moments of structure functions
 - anomalous approach of structure functions ($e.g.\ R$ ratio) to real photon limit
- Identification of correct low Q^2 dynamics requires careful treatment of "trivial" kinematical corrections
 - target mass corrections
 - \rightarrow related to behavior of structure functions in large-x limit
 - \Longrightarrow focus mainly on e scattering; results carry over to ν case

Resonance-DIS transition

As W decreases, DIS region gives way to region dominated by nucleon resonances



Resonance-DIS transition



Average over (strongly Q^2 dependent) resonances $\approx Q^2$ independent scaling function

"Bloom-Gilman duality"

Jefferson Lab (Hall C)

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Operator product expansion

$$\begin{split} \Pi_{\mu_1\cdots\mu_{2k}} &= p_{\mu_1}\cdots p_{\mu_{2k}} - (g_{\mu_i\mu_j} \text{ terms}) \\ &= \sum_{j=0}^k (-1)^j \frac{(2k-j)!}{2^j (2k)^j} g\cdots g \ p\cdots p \qquad \text{traceless, symmetric} \\ &\quad \text{rank-}2k \text{ tensor} \end{split}$$

Georgi, Politzer (1976)

Operator product expansion

expand moments of structure functions in powers of $1/Q^2$

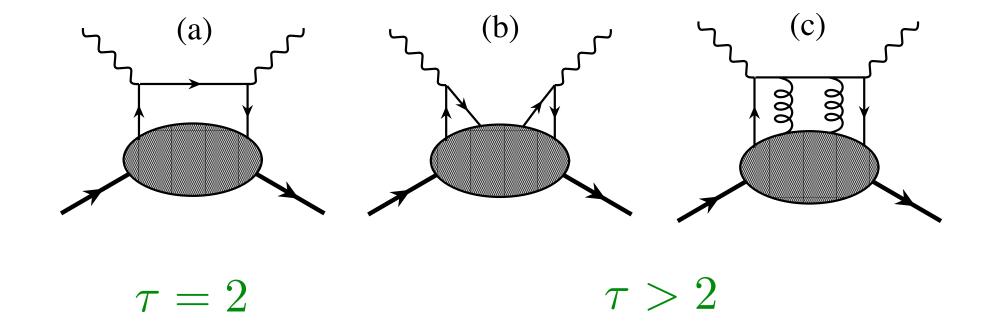
$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

matrix elements of operators with specific "twist" au

$$\tau = \text{dimension} - \text{spin}$$

leading twist

higher twist



single quark scattering

qq and qg correlations

Operator product expansion

expand moments of structure functions in powers of $1/Q^2$

$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} \ F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

If moment \approx independent of Q^2

 \Longrightarrow higher twist terms $A_n^{(\tau>2)}$ small

Operator product expansion

expand moments of structure functions in powers of $1/Q^2$

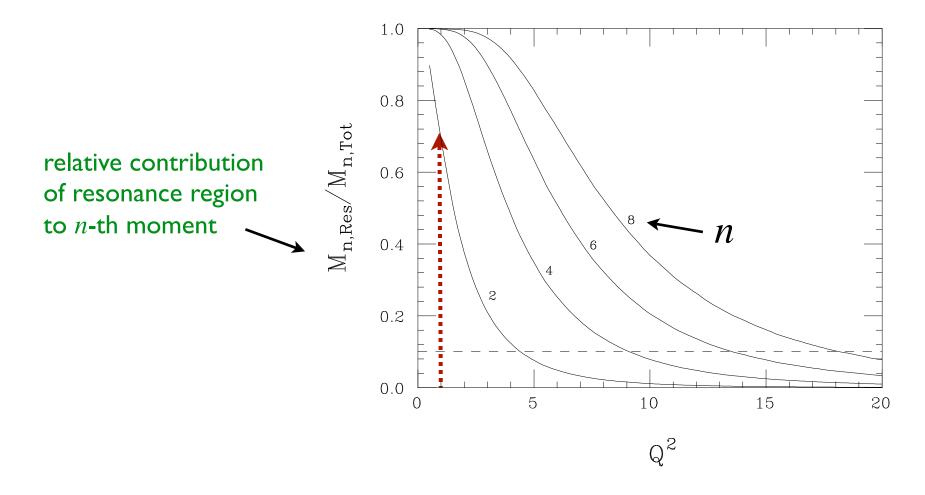
$$M_n(Q^2) = \int_0^1 dx \ x^{n-2} F_2(x, Q^2)$$
$$= A_n^{(2)} + \frac{A_n^{(4)}}{Q^2} + \frac{A_n^{(6)}}{Q^4} + \cdots$$

Duality \iff suppression of higher twists

- Considerable data exists in <u>resonance</u> region, W < 2 GeV
- → common wisdom: pQCD analysis not valid in resonance region
- → in fact: partonic interpretation of moments <u>does</u> include resonance region

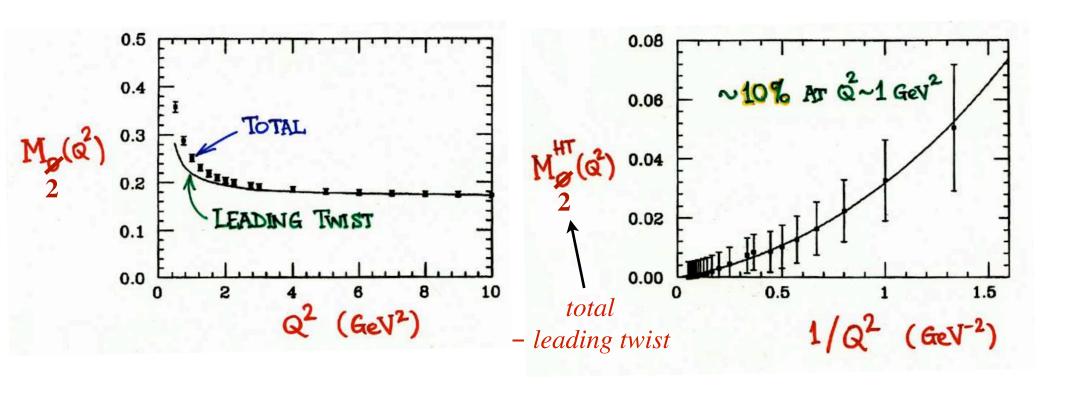
- Resonances are an <u>integral part</u> of deep inelastic structure functions!
- → implicit role of quark-hadron duality

Proton F_2 moments



At $Q^2 = 1 \text{ GeV}^2$, ~ $\frac{70\%}{}$ of lowest moment of F_2^p comes from W < 2 GeV

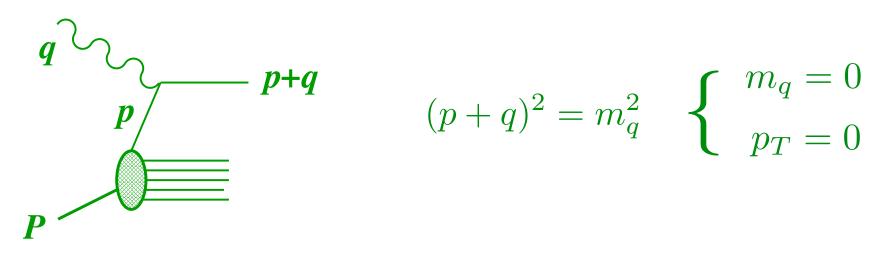
Proton F_2 moments



Nachtmann moments

- Formulation in terms of usual ("Cornwall-Norton") moments mixes operators of same \underline{twist} , but different \underline{spin} , n
 - \rightarrow irrelevant at large Q^2 , but important at intermediate $Q^2/\nu^2=4M^2x^2/Q^2$
 - → "target mass corrections" associated with higher spin operators (trace terms in OPE)
- Nachtmann (1973) constructed moments in which only operators with spin n contribute to the n-2 moment of structure function
 - \rightarrow automatically accounts for kinematical finite M^2/Q^2 effects

Parton kinematics



light-cone fraction of target's momentum carried by parton

$$\xi = \frac{p^+}{P^+} = \frac{p^0 + p^z}{M}$$
 Nachtmann scaling variable

$$\Rightarrow \quad \xi = \frac{2x}{1+r} , \quad r = \sqrt{1 + 4M^2 x^2 / Q^2}$$

$$\rightarrow \quad x \quad \text{as} \quad Q^2 \rightarrow \infty$$

n-th Nachtmann moment of F_2 structure function

$$\mu_2^n(Q^2) = \int_0^1 dx \frac{\xi^{n+1}}{x^3} \left(\frac{3+3(n+1)r+n(n+2)r^2}{(n+2)(n+3)} \right) F_2(x, Q^2)$$

- \rightarrow n-th moment of PDFs at finite Q^2
- Relate Nachtmann and CN moments

$$\mu_2^n(Q^2) = M_2^n(Q^2) - \frac{n(n-1)}{n+2} \frac{M^2}{Q^2} M_2^{n+2}(Q^2)$$

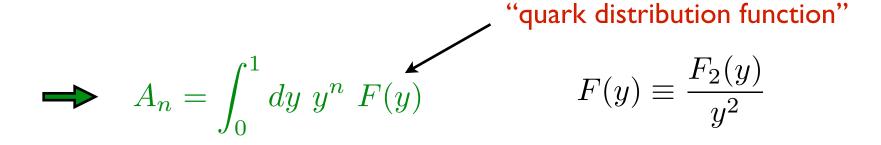
$$+ \frac{n(n^2-1)}{2(n+3)} \frac{M^4}{Q^4} M_2^{n+4}(Q^2) - \frac{n(n^2-1)}{6} \frac{M^6}{Q^6} M_2^{n+6}(Q^2) + \cdots$$

→ mixing between lower & higher CN moments

lacktriangleq n-th Cornwall-Norton moment of F_2 structure function

$$M_2^n(Q^2) = \int dx \ x^{n-2} \ F_2(x, Q^2)$$

$$= \sum_{j=0}^{\infty} \left(\frac{M^2}{Q^2}\right)^j \frac{(n+j)!}{j!(n-2)!} \frac{A_{n+2j}}{(n+2j)(n+2j-1)}$$



take inverse Mellin transform (+ tedious manipulations)

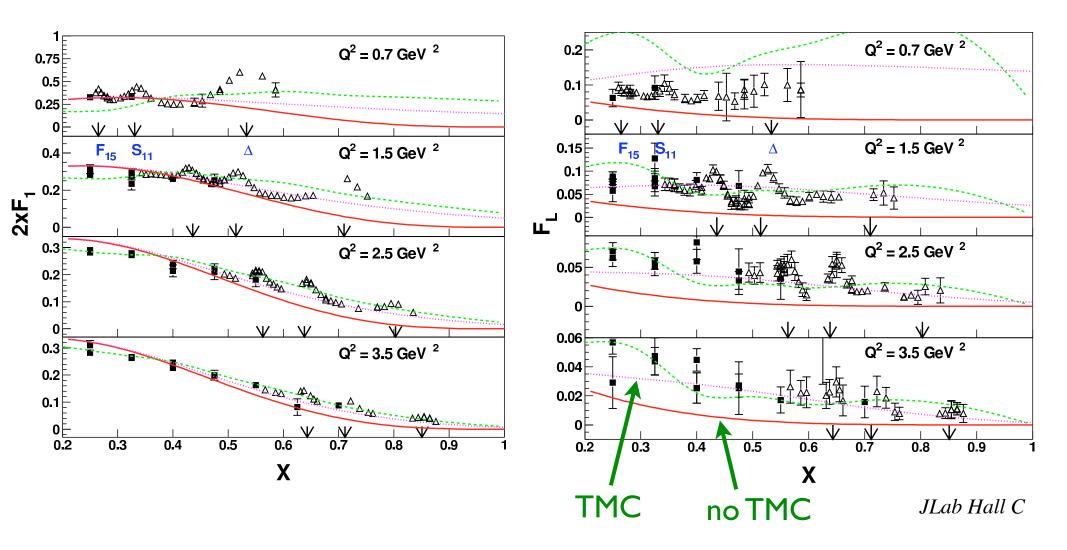
→ target mass corrected structure function

$$F_2^{\text{GP}}(x, Q^2) = \frac{x^2}{r^3} F(\xi) + 6 \frac{M^2}{Q^2} \frac{x^3}{r^4} \int_{\xi}^{1} d\xi' F(\xi')$$
$$+ 12 \frac{M^4}{Q^4} \frac{x^4}{r^5} \int_{\xi}^{1} d\xi' \int_{\xi'}^{1} d\xi'' F(\xi'')$$

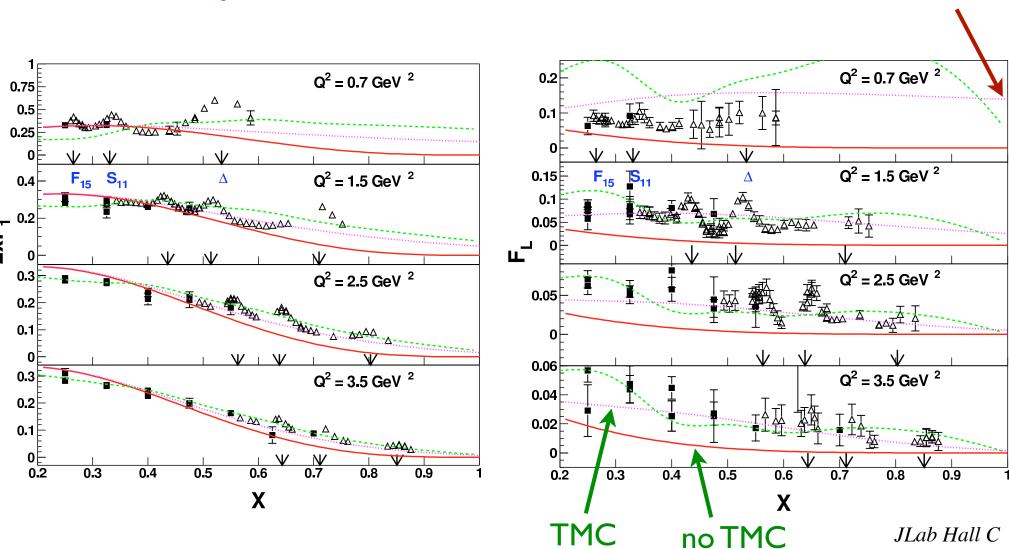
$$\xi = \frac{2x}{1+r} \qquad r = \sqrt{1 + 4x^2 M^2 / Q^2}$$

... similarly for other structure functions F_1, F_L

numerically...



 \longrightarrow TMCs significant at large x^2/Q^2 , especially for F_L



non-zero at x=1!

 \longrightarrow TMCs significant at large x^2/Q^2 , especially for F_L

Threshold problem

if $F(y) \sim (1-y)^{\beta}$ at large y

then since
$$\xi_0 \equiv \xi(x=1) < 1$$

$$F(\xi_0) > 0$$

$$F_i^{\text{TMC}}(x=1,Q^2) > 0$$

is this physical?

problem with GP formulation?

Johnson/Tung - modified threshold factor

Nachtmann moment

$$\mu_2^n(Q^2) = \int_0^1 dx \frac{\xi^{n+1}}{x^3} \left(\frac{3+3(n+1)r+n(n+2)r^2}{(n+2)(n+3)} \right) F_2(x, Q^2)$$

$$n \text{ fixed, } Q^2 \to \infty$$

$$\mu_2^n(Q^2) \to (\ln Q^2/\Lambda^2)^{-\lambda_n} A_n$$

$$A_n = \int_0^1 d\xi \ \xi^n \ F(\xi)$$

■ Johnson/Tung - modified threshold factor

Nachtmann moment

$$\mu_2^n(Q^2) = \int_0^1 dx \frac{\xi^{n+1}}{x^3} \left(\frac{3+3(n+1)r+n(n+2)r^2}{(n+2)(n+3)} \right) F_2(x, Q^2)$$

ansatz
$$\mu_2^n(Q^2) = \xi_0^n(Q^2) (\ln Q^2/\Lambda^2)^{-\lambda_n} A_n$$

- consistent with asymptotic pQCD behavior
- → not unique!

Johnson/Tung - modified threshold factor

moreover, if identify
$$A_n$$
 with $M_2^n = \int_0^1 dx \ x^{n-2} \ F_2(x)$

$$\mu_2^n(Q^2) = \xi_0^n(Q^2) \ M_2^n(Q^2)$$

$$M_2^n(Q^2) = \mu_2^n(Q^2) + \frac{nM^2}{Q^2}M_2^n + \cdots$$

cf. exact expression

$$M_2^n(Q^2) = \mu_2^n(Q^2) + \frac{n(n-1)}{n+2} \frac{M^2}{Q^2} M_2^{n+2} + \cdots$$

 \longrightarrow inconsistency at low Q^2 ?

■ Kulagin/Petti - expand expressions in $1/Q^2$

$$F_2^{\text{TMC}}(x, Q^2) = \left(1 - \frac{4x^2M^2}{Q^2}\right) F_2^{\text{LT}}(x, Q^2)$$

$$+ \frac{x^3 M^2}{Q^2} \left(6 \int_x^1 \frac{\mathrm{d}z}{z^2} F_2^{\mathrm{LT}}(z, Q^2) - \frac{\partial}{\partial x} F_2^{\mathrm{LT}}(x, Q^2) \right)$$

Kulagin, Petti, NPA765 (2006) 126

has correct threshold behavior

Alternative solution

- work with ξ_0 dependent PDFs
 - \longrightarrow *n*-th moment A_n of distribution function

$$A_n = \int_0^{\xi_{\text{max}}} d\xi \ \xi^n \ F(\xi)$$

- \longrightarrow what is ξ_{\max} ?
 - GP use $\xi_{\text{max}} = 1$, $\xi_0 < \xi < 1$ unphysical
 - strictly, should use $\xi_{\max} = \xi_0$

Alternative solution

- what is effect on phenomenology?
 - → try several "toy distributions"

standard TMC ("sTMC")

$$q(\xi) = \mathcal{N} \xi^{-1/2} (1 - \xi)^3, \quad \xi_{\text{max}} = 1$$

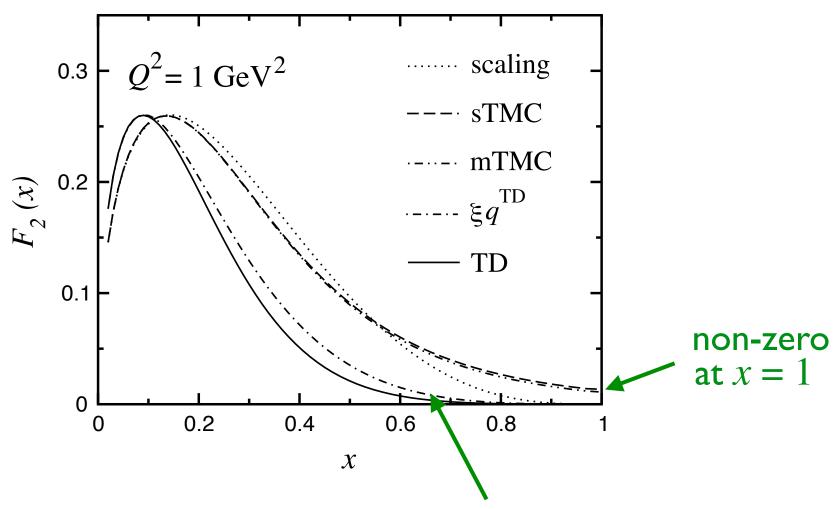
modified TMC ("mTMC")

$$q(\xi) = \mathcal{N} \xi^{-1/2} (1 - \xi)^3 \Theta(\xi - \xi_0), \quad \xi_{\text{max}} = \xi_0$$

threshold dependent ("TD")

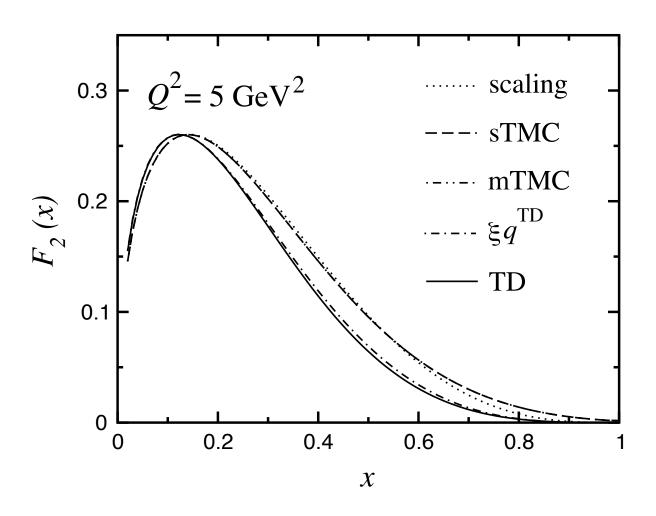
$$q^{\text{TD}}(\xi) = \mathcal{N} \ \xi^{-1/2} \ (\xi_0 - \xi)^3 \ , \quad \xi_{\text{max}} = \xi_0$$

TMCs in F_2



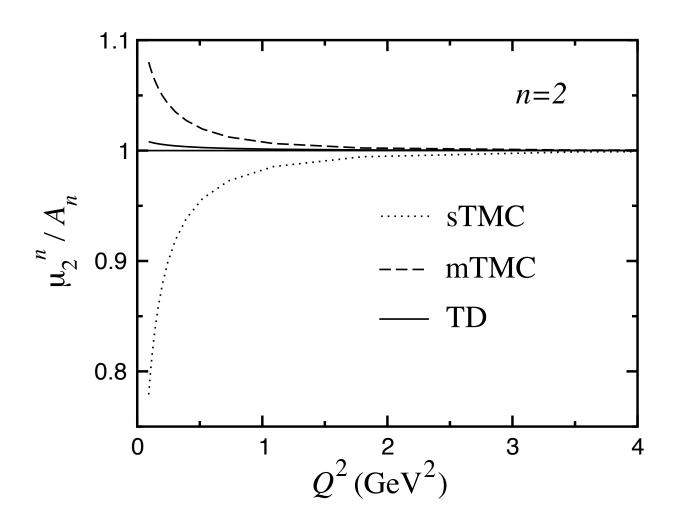
correct threshold behavior for "TD" correction

TMCs in F_2



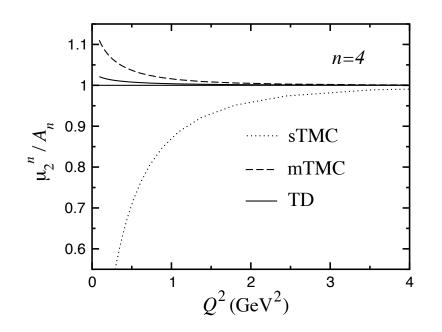
 \longrightarrow effect small at higher Q^2

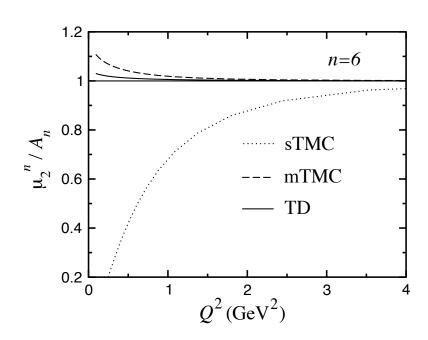
Nachtmann F_2 moments



 \longrightarrow moment of structure function agrees with moment of PDF to 1% down to very low Q^2

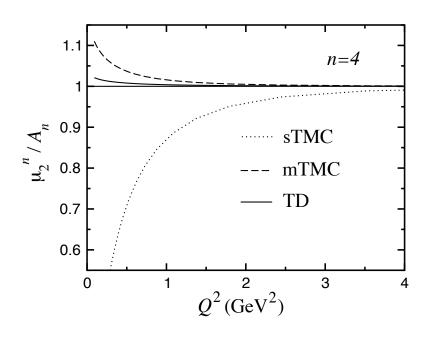
Nachtmann F_2 moments

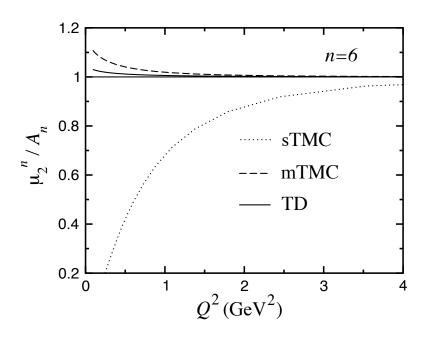




 \rightarrow higher moments show much weaker Q^2 dependence than sTMC & mTMC prescriptions

Nachtmann F_2 moments

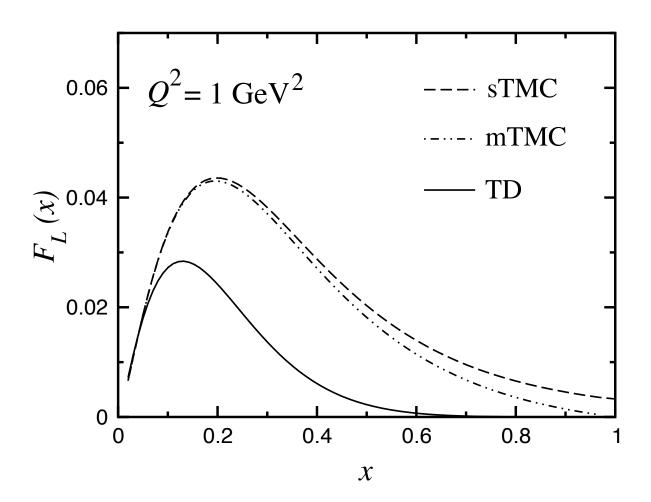




$$\xrightarrow{\mu_2^n(\text{finite }Q^2)} = \frac{\mu_2^n(Q^2 \to \infty)}{A_n(\text{finite }Q^2)}$$

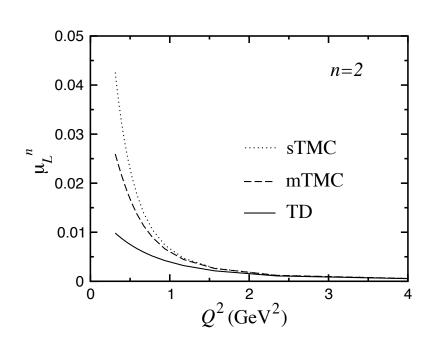
 \longrightarrow extract PDFs from structure function data at lower Q^2

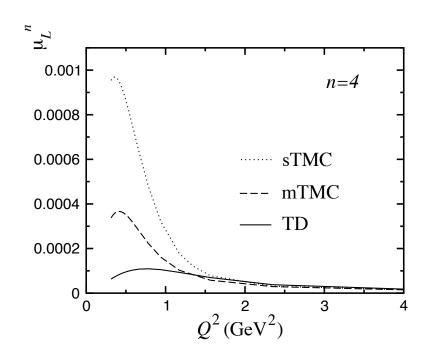
TMCs in F_L



- correct threshold behavior for "TD" correction
- \longrightarrow reduced TMC effect *cf.* sTMC and mTMC

Nachtmann F_L moments





 \longrightarrow weaker Q^2 dependence for TD prescription

Summary

- \blacksquare Target mass corrections important at low Q^2
- Formulations not unique
 - \rightarrow best known Georgi/Politzer presciption suffers from (unphysical) threshold problem at $x\sim 1$
- New formulation avoids threshold problem
 - \rightarrow much weaker Q^2 dependence of moments
 - \rightarrow introduces ξ and ξ_0 dependent PDFs

Straightforward extension to neutrino structure functions